

VEW RELEASE LTEC Corporation Your most experienced partner in IP protection

SiC MOSFET (1200V): 短絡耐量調査・ベンチマークレポート(2025年版)

レポート概要

LTECは2020年に世界初のSiC MOSFETの短絡耐性評価・比較レポート(19G-0025-1) を、2023年には第3世代および第4世代デバイス技術を網羅したアップデートレポート (22G-1100-1) をリリースしました。

2023年以降は、新たな先進トランジスタと中国メーカーのSiC MOSFETを評価して います。今回、アップデートレポートとして、2025年度版の短絡耐性評価・ベンチ マークレポートをリリースしました。今回のレポートには以下のトランジスタが 含まれています。

No.	メーカー(国)	型番	世代	Vdss [V]	RON [mΩ]	
1	BYD Semiconductor (中国)	BSK080S120	G1	1200	80	
2	Basic Semiconductor (中国)	B2M065120Z	G2	1200	65	
3	INFINEON (ドイツ)	IMZC120R078M2H	G2	1200	78	
4	NAVITAS-GeneSiC (米国)	G3F75MT12K	G3F	1200	75	
5	NEXPERIA(中国(オランダ))	NSF080120L3A0	G1	1200	80	

さらに、本レポートには、比較/ベンチマークの目的で、ROHM G4 および Wolfspeed G3 SiC トラン ジスタのデータも含まれています。

● 本レポートでは、実際の短絡試験、トランジスタの構造解析、物理モデリング、シミュレーション を使用したトランジスタの短絡耐性に関する評価および解析データをまとめています。

解析内容&レポート価格

レポート価格: ¥850,000 (税別) 発注後1weekで納品

短絡耐量(SCWT)試験結果

- ・短絡(SC)時のゲート酸化膜リーク電流は、劣化の前兆メカニズムとして 認識されます。
- ・さらに、ゲート電流が流れ始める時間(t1)の比較は、技術の堅牢性、品質、 保護回路の設計マージンの指標として評価されます。
- ・中国製 SiC MOSFET の SCWT とゲート酸化膜の品質を、世界トップクラスの メーカーの製品と比較行っています。
- ・短絡耐量(SCWT)を規定しているメーカーは少ないものの、当社ではオン抵抗 (RON) との依存関係とトレードオフを明確に定義し、評価対象のすべてのデバ イス間で比較しています。

No.1~No.5の各製品については、それぞれ詳細な短絡耐量調査レポートも 販売中です。エルテックまでお問い合わせください。

短絡耐量調査・ベンチマークレポート 目次

] 次】		頁		
1		レポートの目的と概要			
	1.1	エグゼクティブサマリーと主な結論			
	1.2	はじめに。背景, 目的 & 範囲	7		
2		表3:用語集および略語	8		
	2.1	モーターインバーターの短絡(SC)イベントと電圧/電流波形	9		
	2.2	1200V SiC MOSFETで測定された短絡波形	10		
	2.3	短絡試験回路	11		
	2.4	短絡耐量評価とモデリングにおける課題	13		
	2.5	本レポートのデータの使用について	14		
3		ベンチマーク	15		
		表4. 1200V定格SiC MOSFETの短絡特性評価結果の概要 ・ROHM 第4世代SCT4062KR ・INFINEON CoolSiC 第2世代IMZC120R078M2H ・GenSiC第3世代G3F75MT12K ・NEXPERIA(三菱電機)NSF080120L3A0 ・中国製 BYD社 BSK080S120 と BASiC第2世代 B2M065120Z	16		
	3.1.1	ベンチマーク比較表の結果から (1)-(3)	17-19		
	3.2	ベンチマーク結果	20		
	3.2.1	短絡ドレイン電流波形の比較(1)	21		
	3.2.2	SiC MOSFET 短絡耐量ユニバーサルグラフ: SCWT-vs-Pd/A	23		
	3.2.3	ゲートリーク電流に関する考察	24		
	3.2.4	ゲートリーク電流観察 (1)-(7)	25-31		
	3.3	短絡耐久性に関連したトランジスタ構造について	32		
	3.3.1	1200 V SiC MOSFET 構造解析	33		
	3.3.2	短絡耐量時間(SCWT=tsc,f)とピーク短絡電流(Idsc,pk)について			
4		短絡イベントシミュレーション解析	40		
	4.1	放熱解析	42		
	4.1.2	温度上昇 Δ Tjの解析と推定: 熱インピーダンス (1)-(2)	43-44		
	4.2	短絡エネルギーと温度上昇シミュレーション	45-54		
5		ベンチマークの概要	55		
	5.1	短絡耐性と低オン抵抗RONのトレードオフ	56		
	5.2	短絡耐量およびトランジスタのスケーリング(1)、(2)	57-58		
6		ポートまとめ	59		
	6.1	参考文献	60		
7		Appendices	61		
		Appendix 1: LTECによるSiCトランジスタ短絡耐量評価一覧	62		
		Appendix 2. 短絡耐量 (評価と解析モデルの枠組み)	63-68		
		Appendix 3: Infineon第1と第2世代CoolSiC MOSFETの 技術進化と他社との性能比較	69-71		

短絡耐量調査・ベンチマークレポートからの抜粋

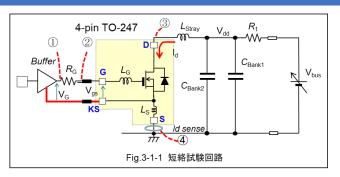


表4. 1200V定格SiC MOSFETの短絡特性評価結果の概要

Fig.3-1-4 評価装置部の写真

				ROHM (JPN)	WOLFSPEED (US)	INFINEON (GERM)	GenSiC (US)	NEXPERIA (オランダ/CHN)	BASIC (CHN)	BYD (CHN)
			Units	SCT4062KR	C3M0075120D	IMZC120R078M2H	G3F075MT12K	NSF080120L3A0	B2M065120Z	BSK080S120
	1	Qualification Level		産業用	産業用	産業用	産業用	産業用	産業用	産業用
Electrical Specs	2	Package		4 TO-247	3, 4 TO-247	4 TO-247	4 TO-247	3-TO-247	4-TO-247	4-TO-247
	3	Technology Generation/Prod year		G4/2021	G3/2016	G2/2024	G3/2024	2023	G2/2023	
	4	Rated Drain Voltage, Vdss	V	1200	1200	1200	1200	1200	1200	1200
	5	Ron/ DC ld	mΩ/A	62 / 26	75 / 30	78 / 28	75 / 30	80 / 35	65 / 47	80 / 36
	6	Vth	V	3.8	2.5	4.2	2.9	2.3	2.8	3.0
ıca	7	Gm/W	mS/mm	^ ^	^ ^	7.0			^ ^	
200	8	Ciss/A	pF/mm2							
Ū	9	Gm/Ciss Chip Size	1/ns mm2							
	11	Specific ON resistance, RONxA	mΩ· mm2							
	12	Peak SC Current, Isc,pk/W	A/mm							
	13	@ 600V SC Time (to failure), t _{sof}	us							
3	14	@ 600V/800V SC Critical Temperature, Tj,crit	°C							
5		SC Critical Energy-to-Failure Esc,f/AA								
3	15	@ 600V/800V	mJ/mm2							
5	16	SC Max Withstand Time, tscon @ 600V/800V	us							
5	17	SC-induced Gate Current turn-on time, t1	us							
	18	臨界エネルギー at t=t ₁ ,Eso,t1 /AA 800V	mJ/mm2							
	19	Transistor Array Active Area, AA	mm2							
nles	20	Transistor Configuration								
-ean	21	Gate Oxide Thickness, Tox	nm							
U	22	Transistor Cell Pitch, P	um							
Device Structural Features	23	Die Photograph			0000	N V	1000	-	i i	1 1
1200V SiC MOSFETS				Esc(t1)/AA [mJ/mm2] @ Vds=800V						
		_					()	[
					1					
	■ SC-	induced Gate Current turn-on time, t1	Time (to fai	lure), tsc,f @ 6	600V		SC Energy De	nsity Esct1/AA @ t1	@ 800V	

Fig. 3.1.1: 評価された 1200C SiC MOSFET の短絡能力と破壊までの時間 (SCWT@Vds=600V 時) および ゲートリーク電流の開始時刻 (t1) における消費エネルギーEsc(t1)の比較。

株式会社エルテック

mail contact2@ltec.biz

HP https://www.ltec-biz.com/

短絡耐量調査・ベンチマークレポートからの抜粋

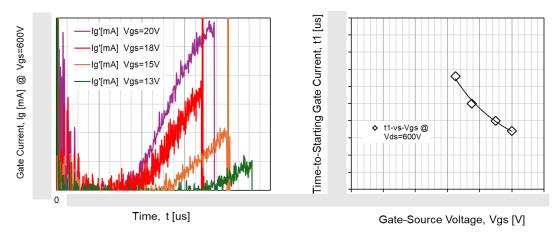


Fig. 3.2.10: Vds = 600V での短絡過渡時のゲート電流 (Ig) とゲート-ソース電圧 (Vgs) の影響の例1。

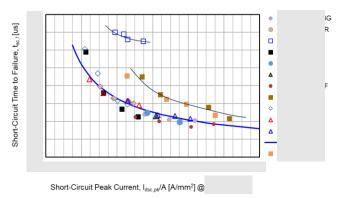


Fig. 3.3.4: いくつかのメーカーとテクノロジーの評価された1200V SiC MOSFET の SC ピーク電流密度 $(I_{dsc,pk}/A)$ に対する SC 破壊時間 $(SCWT=t_{sc,f})$ の依存性の概要。

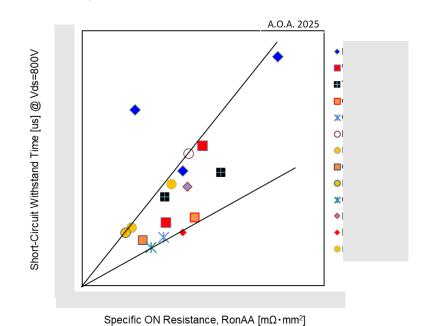


Fig.5.2.2: 複数のメーカーおよび技術世代のデバイスにおける短絡耐量(Vds=800V時)のトレンドが、面積当たりのオン抵抗(RonAA)に依存していることを示しています。