

New Release

LTEC Corporation

Your most experienced partner in IP protection

SiC MOSFET(1200V): SiC MOSFET of Chinese makers Survey and Benchmark Report (2025 Edition)

Overview

As SiC wafer production yields has been improving in China, major global SiC MOSFET manufacturers have begun to adopt wafers from Chinese companies, and improvements in wafer quality, yields, and costs have been reported.

In addition to wafers, Chinese companies are also expanding their presence in the SiC power device manufacturing field (estimated 100 companies), and it is predicted that Chinese SiC powe devices will be rapidly adopted in a variety of products in the future.

LTEC has been analyzing and evaluating products from major Chinese manufacturers since 2021. Chinese SiC MOSFETs have begun to appear with performance equivalent to that of major manufacturers, so LTEC believes that it is necessary to regularly check the technical level of Chinese SiC MOSFETs, just like major manufacturers.

Report overview

LTEC has conducted structural/material analysis and electrical characteristic analysis of approximately 60 SiC power devices (2014-2025) and nine Chinese SiC power devices since 2021 This report summarizes the trends of Chinese manufacturers, and technical comparison with major global manufacturers (see page 3). Report Contents/Overview of Results

Maker	Gen.	Product number	BVds(V)	lo(A)	Ron(mΩ)
BASIC	Gen2	B2M065120Z	1200	47	65
INVENTCHIP	Gen2	IV2Q12040T4Z	1200	65	40
INVENTCHIP	Gen3	IV3Q12040T4Z	1200	147	13.5
HESTIA	Gen2	H2M12DF080	1200	33	80
HUNAN SANAN	Gen2	SMS1200075M2	1200	35	72

Report contents

Chinese manufacturers' FOM RONxAA is beginning to rival the third generation of major manufacturers.

The epitaxial/buffer layer thicknesses of all SiC MOSFETs evaluated are very similar, possibly indicating commonality (SiC substrate, epitaxial layer, and buffer layer).

The impact on reliability is unknown, but shaping abnormalities have been confirmed around the source electrode and contacts in some products.

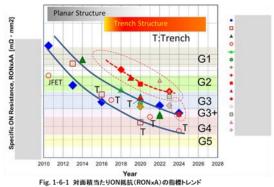
Cost analysis suggests that the cost price of Chinese manufacturers is significantly lower than that of US manufacturers.

Phone: +1-(650) 382-1181 Contact2@Itec.biz

LTEC Corporation US Representative Office www.ltec-biz.com/en/ 2310 Homestead Rd, C1 #231 Los Altos, CA 94024

Report No : 24G-0565-1 Release day: 2024.2.17

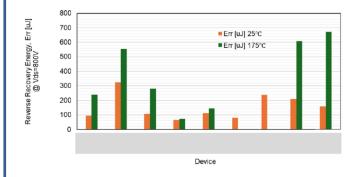
Report price


Delivered one week after order placement Please contact us for report pricing.

(1) Table of Contents

١.	1.	Executive summary	4
	2.	Background and purpose of analysis	5
	3.	Representative Chinese SiC power semiconductor manufacturers	6
	4.	Company overviews of SiC power semiconductor manufacturers	7
	5.	Comparison of Chinese-made SiC MOSFETs (overview)	9
	6.	SiC MOSFET technology/performance trends and the positioning of Chinese	10
		manufacturers	
II.	1.	SiC MOSFET structure overview	13
	2.	Typical schematic diagram of SiC MOSFET	14
	3.	Overview of main structural features of transistors	16
	4.	Features of each Chinese SiC MOSFET product	20
	5.	(1) Characteristic structure (Hestia)	21
	6.	Chinese SiC-MOSFET manufacturing concerns	23
	7.	Manufacturing concerns (1)	24
	8.	Manufacturing concerns (2)	25
	9.	Manufacturing concerns (3)	27
III.	1.	Electrical characteristic benchmark	29
111.	2.	Comparison of electrical characteristic data	30
	3.	Comparison of structural parameters	32
	4.	Switching energy loss	33
	5.	Comparison of off-state drain leakage current characteristics	38
	6.	Comparison of off-state gate leakage current characteristics	40
	7.	Comparison of Bydss characteristics	42
		AA () () () () () () () () () (44
IV.		Manufacturing costs of Chinese SiC MOSFETs	45
	2. 3.	Overview of the manufacturing process for 1200V SiC MOSFETs Summary of wafer cost (PWC) estimates for SiC process	46
V.	1.	Appendix	47

Excerpt (1) from the report


★このグラフは 当社の2015年―2024年で実施した解析データである

- 1)下の線は、大手 SiC デバイスメーカー (1) ● RONxA が最も低い
- 2) 中央の線は、マイナーメーカー () を含む傾向である。 3) 赤い破線は、中国メーカーの傾向です → 2023年以前では技術の遅れが明らかとなっていたが、 2023年度以降、 や など一部のメーカーは主要メーカーに追いつきつつある。

3. 電気的特性のベンチマーク

			Chinese Manufacturers														
		Unit	BASIC					Inve	ntchi p	Т	SASTO	Т	Hestia		Sanan	WOUSPEE	
1	Partnumber		81M08012	OHC	B2M06512	N.	N1Q1208	FV3Q12013	FV3Q12013F4Z		SA1M1200065D		10	SM\$1200075M2		E4M001312	
2	Technology Generation		1st		2nd		ist		3rd	Г	1st		2nd	Г	2nd	П	4gs
3	Model Year		2018	4	2023	-	2020	4	2024	1	2019		2021		2023		2024
4	Package		TO-247-3L		TO-247-4		TO-247-3		T0-247-4	1	TO-247-3		TO-247-3L		TO-247-4L		TO-247-4L
5	Vds	٧	1200	-	1200	-	1200		1200	1	1200		1200		1200		1200
6	DC Drain Current, Id @ Tc=25°C	Α	42	_	e		42		147		36		33	*****	35		153
7	DC Drain Current, Id @ Tc=300°C	A	29	1													
8	Pulsed Drain Current, Id,pulse	Α	80	1													
9	Max Junction Temperature, Tjmax	*C	150	1													
10	Max Power Dissipetion, Pd	w	295	1													
11	Threshold Vollatge, Vth (Typ)	٧	2.9														
12	Thermal Emistance, Rth.jc (Max)	*C/W	0.425	1													
13	Recommended Operating Vgs	V	20	1													
14	ON Resistance, RON (Typ) @ Tiv25*C	mO.	80	1													
15	ON Resistance, RON (Max) @ Tj=25°C	m0		1													
16	ON Resistance, RON (Typ) @ Tiu150°C	m0	110	1													
17	ON Resistance, RON (Typ) @ Tj=175°C	m0		1													
18	Gate Input Resistance, Rg	0	1.49	1													
19	Transconductance, gm	8	6.5	1													
20	Ciss Vgs+0V, Ws+800V	p ^c	2224	ш													
				1													
21	Ciss/AA	pF/mm2	250	1													
22	Coss	př	108	1													
23	Coss/AA	pF/mm2	12.1														
24	Cras	pF	25	ı													
25	Crss/AA	pf/mm2	2.8														
26				L													
27	Total Gate Charge, Qg	rC	129														
28	Qps	rC.	37	ı													
29	Ogd	rC .	54	ı													
10	Turn-on delay time, td(on) Vds=800V, L=250uH	ra	21	ш													
31	Risetime, tr	ns	68	1													
32	Turn-off delay time, td[off)	ra	27]													
33	Fall time, if	ns	27	1													
24	Turn-on Switching Loss, Eon Vds+EOOV	u)	254	1													
35	Turn-off Switching Loss, Eoff	w	180	1													
16				1													
37	Body Di ode Forward Voltage, Vsd	V	6.7	1													
38	Reverse Recovery time, try - (8 Vrs800V, 15s12A	ra	-														
39	Reverse Recovery charge, Qrr	rC	108														
40	Peak Reverse Recovery Current, Irrm	A	25	1													
41				1													
42	Thermal Impedance 2th Ø tp-Sus Single Pulse	*C/W	0.00032	1													
43	Thermal Impedance, 2th @ tps20us Single Pulse		0.003	1													
44	Thermal Impedance, 2th @ tp=000us Single	*C/W	0.02	1													
**	Culter	- CW	0.02	1													

				Chinese Manufacturers														
			Unit	BASIC				In	tchip	SASTC		Hestia		Sanan	WOLFSPEE			
		Part number		B1M08012	онс	B2M06512	20Z	IV1Q12080	Г3	IV3Q12013T	4Z	SA1M120006	55D	H2M120F08	0	SMS1200075M2	E4M001	3120k
		Technology Generation		1st		2nd		1st		3rd		1st		2nd		2nd	4th	
	47	Chip Size, X x Y	mm x mm	3										,				Ţ
	48	Chip Size, A =X x Y	mm2															
	49	Transistor Active Area, AA	mm2															
<u>r</u> e	50	Chip Edge (Uneffective) width, We	mm															
	51	FOM 1:単位面積当たりON抵抗, RONxAA	mΩ • mm2															
ಕ	52	FOM 2: RONxQg	Ω·nC															
2	53	MOSFET Total Channel width, W	mm															
Š	54	Transistor cell structure		-														
Device Structure	55	Transistor cell array configuration																
De	56	Transistor cell Pitch, P	μm															
_	57	Tox	nm															
	58	N-Epi thickness	μm	****														
	59	Chip Thickness, dsic	μm															
																		
					T		I					T T						T

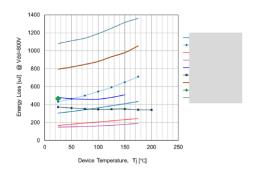
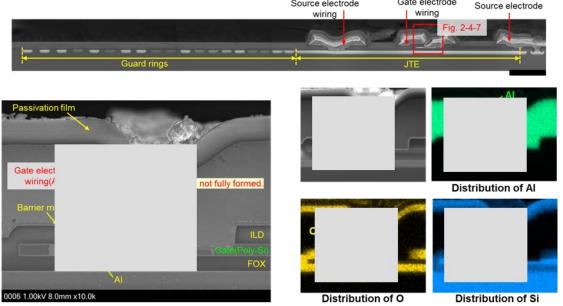


Fig.X-1 1200V, Ron~32-40mΩ SiC MOSFET (a) Reverse recovery energy loss of the body diode (Err @ 25°C, 800V) and (b) total switching energy loss



Excerpt (2) from the report

表2. トランジスタの主な構造的特徴の概要

	BASiC社	Inventchip社	Inventchip社
製品	B2M065120Z	IV2Q12040T4Z	IV3Q12013T4Z
Die image	r imo	0	N 6 8
Transistor cell Plane view SEM Image	P-matum P-matum	Gate Electrode Plantin ++P	Gate Becrose O O O O O O O O Postupa
Transistor cell Cross section SEM Image	N-ept N Buffer N Buffer	N-Epi N Buffer III	N-Epi N-Epi N-Buffer IIII III III III III III III III III

製造上の懸念点(3)(

Source electrode

Fig. 2-4-7 外周部 断面SEM像

Fig. 2-4-8 SEM-EDXマッピング結果

Gate electrode

