

New Release

LTEC Corporation

Your most experienced partner in IP protection

IGBT power module(750V): BYD (equipped in ATTO 3) BG820F08B14L5 Module & IGBT Structure Analysis Report

https://www.byd.com/jp/car/atto3

Module appearance

IGBT die

Overview

BYD, China's largest EV (electric vehicle) manufacturer began selling the ATTO 3 in China in February 2022.

The ATTO 3 is equipped in a 58.56 kWh battery and can travel 485km.

It has also been on sale in Japan since January 2023 as an EV passenger car for the Japanese market.

This report is a structure analysis report that clarifies the details of the IGBT power module equipped in the "ATTO 3" inverter and the IGBT mounted in the module.

Product features

- Product number: BG820F08B14L5 750V Si-IGBT IC = 820A
- Product release data: 2022
 URL: https://www.bjxchip.com/web/soft/bg820f08b14l5.pdf
- Module equipped in ATTO 3 motor 150kW (system voltage 390V)
- IGBT uses 750V trench and field stop technology
- Module current capacity(Ic=500A:TF=65 $^{\circ}$ C, Tvj=150 $^{\circ}$ C, Ic=820A:TF=25 $^{\circ}$ C, Tvj=175 $^{\circ}$ C)
- The current density is 3.4 A/mm².

Report Contents

1. Module structure analysis report (35 pages)

- An external thermistor is used as the temperature detection element, and no temperature sensor diode is formed into the chips.
- Aluminum oxide DBC substrate is used for the insulating layer.

2. IGBT structure analysis report (76 pages)

- Trench type IGBT, 1-phase Si-IGBT(4 dies) and Si-FWD (3 dies).
- Cell pitch, trench width and depth are the same as those of Infineon EDT2 using a micro-trench process.
 - * The trench bottom shape is distinctive. (This is confirmed in products of Chinese manufacturers)
- Due to issues with the size of the contact diameter and trench width, electrode extraction pads are used.

Report price

Delivered one week after order placement. Please contact us for report pricing.

LTEC Corporation US Representative Office www.ltec-biz.com/en/ 2310 Homestead Rd, C1 #231 Los Altos, CA 94024 Phone: +1-(650) 382-1181 Contact2@ltec.biz

Report No : 23R-1029-1,2 Release day: 2024.05.17

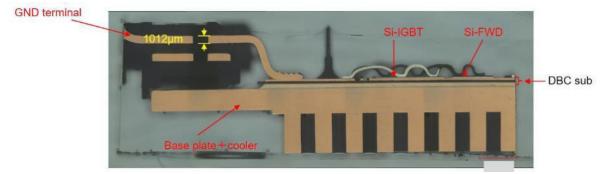
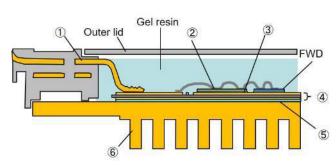

1. Module structure analysis report

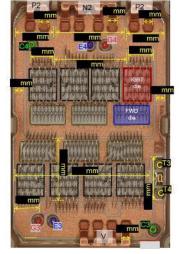
Table of Contents

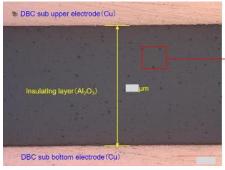

[TABLE OF CONTENTS]				
1		Device summary		
		Table1-1: Device summary		3
	1-1.	Summary of analysis results		4
		Table1-2: Module structure summary		5
2		Module analysis		
	2-1.	Appearance observation		7
	2-2.	Internal layout observation	•••	11
	2-3.	Mounted die observation		14
	2-4.	Module cross-sectional observation	• • •	15

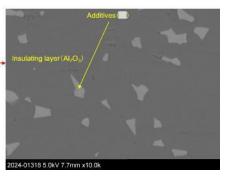
Excerpt from Module structure analysis report

Module cross-sectional OM image

4	SHIGHT			
2-1	VS 75237570000	Bonding wire	#175um	M .
2-2	- 3	Protective film	7:4~9.5pm	-0.0
2-3	Į,	Substrate	Mun	50
2-4		Backside metal-1	Short	ACH
2-5		Backside metal-2	145 mm	n n
2-6		Backside metal-3	Minn	N N
3	Die atta	ch(IGBT)	M. Jun	SmigGa
4	DBC sub)		-
4-1	8	DBC upper electrode	29961	01
4-2		Insulating substrate	\$15pm	#6304 (2h)
4-3		DBC bottom electrode	Hlam	Ca
5	Solder	· ·	Illum	3HACK
6	Cooler		\$135pm	
6-1		Ni plating layer	i-lum.	- 6
6-2	-	Ni-P plating layer	6.Euro	50-8
6-3		Base plate	5445µm	01
6-4		Cooling pin	SHRun	Ga
7	Case			COLUMNS


Length measurement


Materials


Measurement points

Module cross-sectional structure image

Table: Module structure summary

OM image

SEM image

Module internal layout

DBC substrate insulating layer

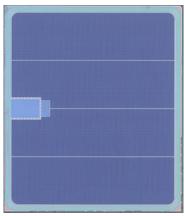
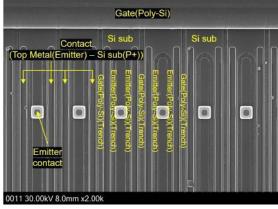
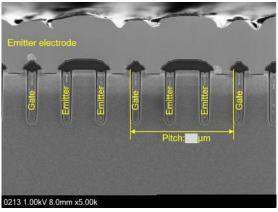
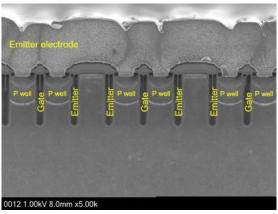
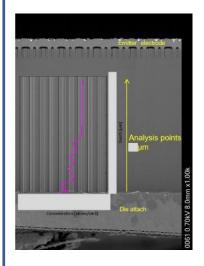

2. IGBT structure analysis report

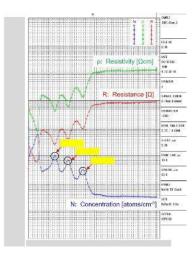
Table of Contents


[T,	[TABLE OF CONTENTS]			
1		Device summary		
		Table1-1: Device summary		3
	1-1.	Summary of analysis results	• • •	4
		Table1-2: Device structure: Si IGBT	• • •	5
		Table1-3: Device structure: Layer materials and thicknesses	• • • •	6
2		Module analysis		
	2-1.	Appearance observation	• • •	8
	2-2.	Internal layout observation	• • • •	12
	2-3.	Mounted die observation	• • • •	13
3		Si IGBT die structure analysis		
	3-1.	Plane structure analysis by Optical Microscope	• • •	15
	3-2.	Plane structure analysis by SEM	• • •	31
	3-3.	Cell array cross-sectional structure analysis	• • • •	42
	3-4.	Cross-sectional structure analysis of IGBT die outer periphery	• • •	55
	3-5.	Cross-sectional structure analysis of Gate electrode pad		70
4		SR analysis		74


Excerpt from IGBT structure analysis report


Si IGBT die (Poly-Si layer)


Plane SEM image of cell array (Poly-Si layer)



Cross-sectional SEM image of cell array

<u>Cross-sectional SEM image of cell array</u> (Stain etching)

X The SR analysis results in this analysis report do not include data on the thickness and carrier concentration of the P+ Collector layer.

SR analysis of IGBT backside

