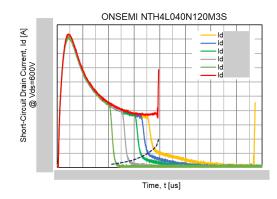



New Release

LTEC Corporation


Your most experienced partner in IP protection

SiC MOSFET(1200V): Onsemi製 NTH4L040N120M3S

短絡耐量評価・解析レポート

レポート概要

・パワーデバイスの短絡耐量(SCWT)は、耐久性、信頼性を表す重要な指標となります。 歩留まり、コストの問題から、Si-IGBTに比べてSiC-MOSFETはチップサイズを小さくしたい(高Ron)が 短絡耐量はRonとトレードオフの関係にあり、用途に合わせてどの様に特性担保するかは各社デバイス を使用していく上での重要なポイントとなっています。※SCWT: Short Circuit Withstand Time

・今回は、2022年に発売のOnsemi社製 Elite SiC MOSFET [NTH4L040N120M3S]の短絡耐量の

評価レポートとなります。

型番: NTH4L040N120M3S Vds=1200V Id=54A 製品リリース日: 2022年12月(データシート)

レポート内容

- ・本M3S テクノロジーの SiC MOSFET は、非常に高い短絡ピーク(最大)電流を特徴としており、短絡耐量に大きく影響する。測定結果とトランジスタの物理的構造の相関性に着目し、Wolfspeed、STMicro製の 同格1200V SiC MOSFETと比較します。
- ・本製品はスイッチング電源用途であり、同社 SC1 トランジスタ(EV モーター インバーター用途)と比較して、トランジスタの特徴を考察します。

評価結果の活用について

- ・短絡保護回路の最小応答時間を推測することが可能です。
- ・測定された短絡ドレイン電流波形と耐久時間(tsc,f)から、SPICE電気・熱シミュレーションを使用し、 トランジスタの内部温度を推定することが可能となります。
- ・M3S テクノロジーは第3~4世代の SiC デバイスと互換性がありますが、高い短絡耐時間を必要とするアプリケーションには JFET 領域を再設計/最適化する必要があると考えられます。

レポート販売価格(税別) ¥600,000 発注後1weekで納品

※ NTH4L022N120M3S: 構造解析、プロセス解析レポート販売中

株式会社エルテック Phone: 072-787- 7385 664-0845 兵庫県伊丹市東有岡4丁目42-8 e-mail: contact2@ltec.biz HP: https://www.ltec-biz.com/

> Report No : 23R-0299-1 Release day: 2023.08.21

Table of Contents

【目 次	v]		頁
1		背景、目的とエグゼクティブサマリー ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
		はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
2		Onsemi製 SiC MOSFET「NTH4L040N120M3S」デバイス構造 · · · · · · · · · · · · · · · · · · ·	5
	2.1	デバイス構造/材料解析 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
		表1. 構造パラメータの概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
3		短絡試験 ·····	7
	3.1	短絡試験回路 · · · · · · · · · · · · · · · · · · ·	8
	3.2	短絡耐量試験評価条件 ••••••	9
4		短絡耐量試験測定結果 ••••••	10
	4.1	短絡耐量試験: 電圧および電流波形結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11-17
		表3: Onsemi社製 SiC MOSFET 「NTH4L040N120M3S」の短絡耐量特性測定結果まとめ	18
	4.2	測定結果の解析と考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
		短絡時ピークドレイン電流I _{sc,pk} 対ドレイン電圧V _{ds} とゲート電圧V _{gs} の依存性 ·····・・・・	20
		短絡破壊時間(耐久時間)tsc,f対ドレイン電圧依存性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	21
		ドレイン電圧Vdsに対する短絡エネルギーEsc,f ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
		短絡故障時間 (t _{sc.f.}) と熱暴走を支配する時間 t _{ra} の消費電力 Pd = (Vds x Id)依存性 ・・・・	23
	4.3	ゲートリーク電流に関する考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24-26
		測定された短絡時間(tsc,f)と消費(放熱)電力密度の比較Pd/A=(Vds x ld)/A.	27
	4.4	遅延短絡破壊と安全なターンオフのための最大ターンオン時間(t _{scon})・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	28
	4.5	温度上昇ΔT _j の解析と推定 ····································	29-30
	4.6	電熱モデルを使用して推定された臨界トランジスタ内部温度 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	31
	4.7	温度上昇ΔTjの解析と推定 ······	32
	4.8	オン抵抗と短絡耐量時間のトレードオフ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33
5		Onsemi社 SiCとWolfspeed第3世代のSiCトランジスタの構造比較 ·····	34
	5.1	Onsemi NTH4L040N120M3S, STMicro SCT040W120G3AGとWolfspeed第3世代のSiCトラ	0.5
	5.2	ンジスタの構造比較・・・・・・・ Onsemi NTH4L040N120M3Sと Onsemi NTH4L080N120SC1のSiCトランジスタの	35
	٥.٤	はいます。 「構造比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36
	5.3	1200V onsemi NTH4L040N120M3SとWolfspeed C3M0075120K電気特性比較 · · · · · · · · ·	37
		ROHM、STMicro、Onsemi と Wolfspeedトランジスタ短絡ドレイン電流波形の比較 ・・・・・・	39
		臨界短絡エネルギー(Esc,f)と破壊までの時間tsc,fの依存性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	40
	5.4	Onsemi社 NTH4L040N120M3SとWolfspeed第3世代のSiCトランジスタの短絡耐量比較	41
6		まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
		短絡耐量時間 (t _{sc,f} =SCWT) と単位面積当たりのオン抵抗指数 (RONxA) の一般的なトレンド	43
7		参考文献	44
		Appendix: 温度上昇ΔTjの解析と推定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	45

株式会社エルテック Phone: 072-787- 7385 664-0845 兵庫県伊丹市東有岡4丁目42-8 e-mail: contact2@ltec.biz HP: https://www.ltec-biz.com/

> Report No : 23R-0299-1 Release day: 2023.08.21

レポートー部抜粋 (1)

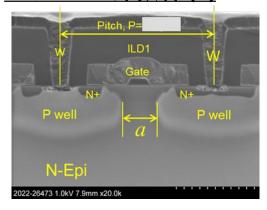


Fig.1: SiC トランジスタセル断面(詳細)

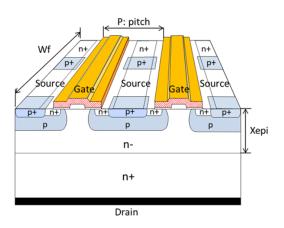
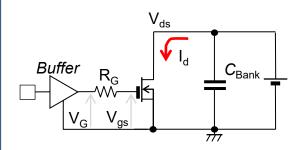



Fig. 2: SiCトランジスタの模式図

No.	V _{ds} [V]	$V_{gs(ON)}$ [V]	V _{gs(OFF)} [V]	ton [ns]	目的
1	600	15	0	1~5	基本短絡特性確認
2	600	15	0	20	再現性, 破壊時間(tsc,f) 確認
3	400	15	0	20	ドレイン電圧依存性確認
4	800	15	0	20	и
5	600	13	0	1.5	ゲート電圧依存性確認
6	600	18	0	1.5	и
7	800	20	0	1.5	ű

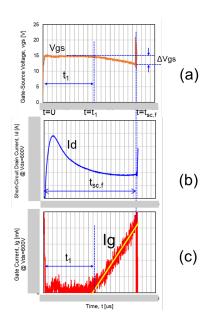


Fig.3: 測定された電圧・電流波形から解析。

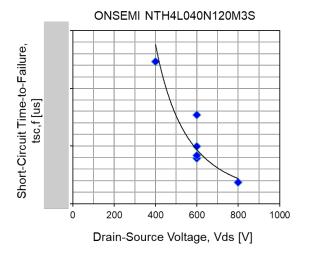


Fig.4: 測定された短絡破壊時間(耐久時間)tsc,f 対ドレイン電圧依存性

株式会社エルテック Phone: 072-787- 7385 664-0845 兵庫県伊丹市東有岡4丁目42-8

e-mail: contact2@ltec.biz HP: https://www.ltec-biz.com/

レポートー部抜粋 (2)

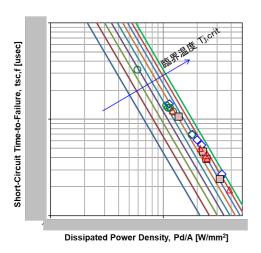


Fig.5:測定された短絡時間($t_{sc,f}$)と消費(放熱)電力密度の比較 $Pd/A = (Vds \times Id)/A$.

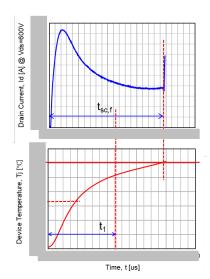
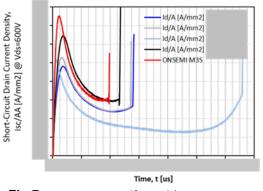
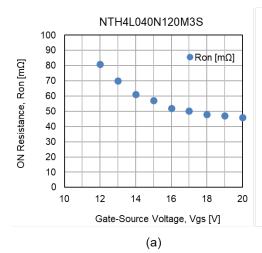



Fig.6: 短絡過渡SPICEモデリングおよび抽出されたトランジスタの温度上昇。



Short-Circuit Energy Density,
Esc/AA [mJ/mm2] @ Vds=600V

Esc/AA [mJ/mm2] @ vds=600V

Esc/A [mJ/mm2] @ vds=600V

Fig.7: ROHM 4G, Wolfspeed (WLFSPD C3M075120K)、STMICRO第3世代(ST3G)、およびONSEMI SC1とM3S SiC MOSFETの(a)短絡電流密度 (Isc/AA) および (b) 短絡消費エネルギー密度 (Esc/AA) の比較。

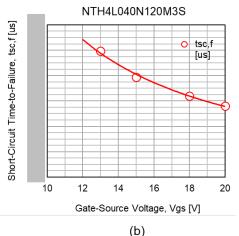


Fig.8: (a) オン抵抗(Ron)、(b) 短絡耐量時間 (tsc,f) のゲート・ソース間電圧 Vgs への依存性

株式会社エルテック Phone: 072-787- 7385 664-0845 兵庫県伊丹市東有岡4丁目42-8 e-mail: contact2@ltec.biz HP: https://www.ltec-biz.com/