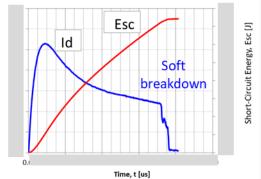


LTEC Corporation

Your most experienced partner in IP protection

INFINEON IMW120R045M1 CoolSiC 1,200V SiC MOSFET SHORT CIRCUIT ROBUSTNESS ANALYSIS REPORTS

February 2020. The short-circuit (SC) capability of power transistors, especially SiC power MOSFETs, is one of the most critical reliability-related specifications. Compared to Si-based IGBTs, the size of the SiC transistor is smaller. This leads to significant reduction in SC endurance time (tsc).


Drain Current Id [A] @ Vds=600V

New

Release

Package

Die image

Drain current waveform and short-circuit energy Esc

Abstract

This report evaluates short-circuit capability and the behavior under fault condition when the device is brought to damage-causing overstress. **Compared with other SiC MOSFETs**, **INFINEON's CoolSiC MOSFETs exhibits a "soft" failure without exploding**. Other SiC MOSFETs explode at the moment of the onset of short-circuit fault.

The report includes:

- Identification of the mechanisms limiting short-circuit capability, measurement, physical analysis results, and extraction of the critical temperature (Tj(crit)) at the onset of failure.
- Comparison of short circuit robustness with other makers' 1,200V SiC MOSFETs. Examination of the differences in semiconductor structure, process, and their effect on short circuit robustness.
- Comparison of the electrical characteristics (off-leakage current and temperature dependence) and identification of differences and limitations.

Use value of the evaluation results in this report

- The minimum response time of the short-circuit protection circuit can be estimated.
- The internal device temperature can be estimated by performing electrothermal SPICE simulation using measured short-circuit drain current waveform and endurance time (t_{sc. f}).

Report price: \$7,500

Table of Contents	
	Page
Summary	
Background, purpose and executive summary	3
Physical analysis results	
Device structure and material analysis	5
Table 1. Summary of each parameter	6
Short circuit robustness evaluation	
Evaluation circuit	7
Evaluation conditions	9
Short circuit robustness evaluation results	
Voltage and current waveform	10
Table 3. Summary of measurement results	17
Discussion for evaluation results	
Peak drain current (Isc,pk) vs. drain voltage (Vds)	20
Short circuit endurance time(tsc) vs. drain voltage (Vds)	21
Short circuit energy (Esc,f) vs. drain voltage (Vds)	22
Short circuit endurance time (tsc) vs. power dissipation (Pd = Id x Vds)	23
Short circuit failure mode	24
Estimation of junction temperature (ΔTj) rise	26
Thermal impedance	30
Comparison of transistor structure and electrical characteristics	33
Comparison of Infineon's 1,200V CoolSiC and Wolfspeed transistors	
Electrical characteristic	35
Drain current at short circuit mode	37
Conclusion	39
Appendix	
References	40

