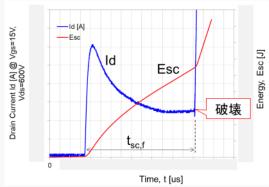


New Release

LTEC Corporation

Your most experienced partner in IP protection


WOLFSPEED C3M0075120K 1,200V SIC MOSFET SHORT CIRCUIT ROBUSTNESS ANALYSIS REPORT

February 2020. The short-circuit (SC) capability of power transistors, especially SiC power MOSFETs, is one of the most critical reliability-related specifications. Compared to Si-based IGBTs, the size of the SiC transistor is smaller. This leads to significant reduction in SC endurance time (tsc).

Package

Die image

Drain current waveform and short-circuit energy (Esc)

Abstract

This is the first published short-circuit robustness analysis report that examines the correlation between short circuit robustness and the physical structure of the C3M0075120K device, which the 3rd gen. of Wolfspeed.

The report includes:

- Identification of the mechanisms limiting short-circuit capability, measurements, physical analysis results, and extraction of the critical temperature (Tj(crit)) at the onset of failure.
- Comparison of short-circuit robustness with 2nd gen 1200V SiC MOSFETs.
- Examination of the differences in semiconductor structure, process, and their effect on short circuit robustness.
- · Use value of the evaluation results in this report
- The minimum response time of the short-circuit protection circuit can be estimated.
- The internal device temperature can be estimated by performing electrothermal SPICE simulation using measured short-circuit drain current waveform and endurance time (t_{sc. f}).

Report price: \$5,000

Table of Contents

	Page
Summary	
Background, purpose and executive summary	3
Physical analysis results	
Device structure and material analysis	5
Table 1. Summary of each parameter	6
Short circuit robustness evaluation	
Evaluation circuit	7
Evaluation conditions	9
Short circuit robustness evaluation results	
Voltage and current waveforms	10
Table 3. Summary of measurement results	17
Discussion for evaluation results	
Peak drain current (Isc,pk) vs. drain voltage (Vds)	19
Short circuit endurance time (tsc) vs. drain voltage (Vds)	19
Short circuit energy (Esc,f) vs drain voltage (Vds)	20
Short circuit endurance time(tsc) vs power dissipation (Pd = Id x Vds)	21
Gate leakage current considerations during SC	22
Estimation of junction temperature (ΔTj) rise	25
Comparison of transistor structure vs 2nd gen	30
<u>Conclusion</u>	33
<u>Appendix</u>	
References	34

