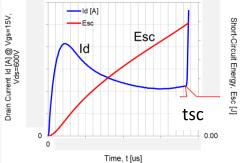


LTEC Corporation

Your most experienced partner in IP protection

WOLFSPEED E3M0065090D AUTOMOTIVE CERTIFIED 900V SIC MOSFET SHORT CIRCUIT ROBUSTNESS ANALYSIS REPORT


New

Release

February 2020. The short-circuit (SC) capability of power transistors, especially SiC power MOSFETs, is one of the most critical reliability-related specifications. Compared to Si-based IGBTs, the size of the SiC transistor is smaller. This leads to significant reduction in SC endurance time (tsc).

Package

Die image

This is the first published short-circuit robustness analysis report that examines the correlation between short circuit robustness and the physical structure of the E3M006509d. This product is compliant to the AEC Q101 automotive certification standard.

The report includes:

- Identification of the mechanisms limiting short-circuit capability, measurements, physical analysis results, and extraction of the critical temperature (Tj(crit)) at the onset of failure.
- Comparison of short-circuit robustness with a 3rd generation 1200V process and a 900V transistor. Examination of the differences in semiconductor structure, process, and their effect on short circuit robustness.
- Comparison of electrical characteristics (off-state leakage current and its temperature dependence), and identification of differences and limitations.

Use value of the evaluation results in this report

- The minimum response time requirement of the short-circuit protection circuit can be estimated.
- The internal temperature of the transistor can be estimated by performing SPICE electrothermal simulation using the measured short-circuit drain current waveform and endurance time (t_{sc.f}).

Report price: \$6,500

Table of Contents	
	Page
<u>Summary</u>	
Background, purpose and executive summary	3
Physical analysis results	
Device structure and material analysis	5
Table 1. Summary of each parameter	6
Short circuit robustness evaluation	
Evaluation circuit	7
Evaluation conditions	9
Short circuit robustness evaluation results	
Voltage and current waveforms	11
Table 3. Summary of measurement results	19
Discussion for evaluation results	
Peak drain current (Isc,pk) vs. drain voltage (Vds)	21
Short circuit endurance time(tsc) vs. drain voltage (Vds)	22
Short circuit energy (Esc,f) vs drain voltage (Vds)	23
Short circuit endurance time (tsc) vs power dissipation (Pd = Id x Vds)	24
Gate leakage current considerations during SC	25
Estimation of junction temperature (ΔTj) rise	28
Thermal impedance	31
Comparison of transistor structure and electrical characteristics	34
Comparison of the 1200V C3M0075120D & 900V E3M0065090D devices	
Drain current at short circuit mode	35
Electrical characteristics	41
Conclusion	44
Appendix	
References	45

